

CvTracker C++ library v8.0.0
programmer’s manual

www.constantrobotics.com

CONTENTS

DOCUMENT VERSIONS .. 4

LIBRARY VERSION .. 4

DESCRIPTION .. 4

LIBRARY FILES .. 4

KEY FEATURES AND CAPABILITIES .. 5

LIBRARY PRINCIPLE ... 6

How the tracking algorithm works ... 6

Supported pixel formats ... 7

STOP-FRAME function .. 9

Сommunication channel delay compensation ... 9

Operation modes .. 10

Criteria for automatic change of operation modes .. 12

HOW TO USE THE LIBRARY ... 12

How to use the library ... 12

Library parameters ... 12

Library control commands .. 14

Obtaining images from library ... 16

Results structure .. 16

Tracking algorithm class description ... 18

Declaration of the Cvt class .. 18

setParam(…) method .. 19

getParam(…) method ... 19

processFrame(…) method .. 20

executeCommand(…) method .. 20

getResults(…) method .. 21

getImage(…) method .. 21

getVersion() method ... 22

EXAMPLE OF USING THE LIBRARY ... 22

Simple demo application .. 22

Explanation of simple demo application .. 26

PROTOCOL PARSER LIBRARY .. 30

Description ... 30

Message formats .. 30

Message types .. 30

SET_PARAM message format .. 31

COMMAND message format .. 31

DATA message format .. 31

Protocol parser class description .. 32

CvtParser class ... 32

encodeParam(…) method ... 33

www.constantrobotics.com 3 / 36

encodeCommand(…) method ... 33

encodeResults(…) method ... 34

decodePacket(…) method .. 35

getResults() method .. 35

getParam(…) method ... 35

getCommand(…) method .. 36

getVersion() method ... 36

www.constantrobotics.com 4 / 36

DOCUMENT VERSIONS

Table 1 – Document versions.

Version Release date What is new

7.2.0 12.12.2022 Programmer's manual for version 7.2.0 of the CvTracker C++ library.

8.0.0 25.12.2022 Programmer's manual for version 8.0.0 of the CvTracker C++ library.

LIBRARY VERSION

Table 2 – Library versions.

Version Release date What is new

7.2.0 12.12.2022 Version 7.2.0.

8.0.0 25.12.2022 1. The calculation speed has been increased.
2. Tracking stability has been improved.
3. Added support for YUV, YUYV, UYVY, NV12, RGB, BGR video
formats for better tracking stability.
4. The number of configurable parameters has been reduced.
5. New control commands added.

DESCRIPTION

C++ library CvTracker version 8.0.0 is intended for automatic object video tracking. The library

is written in C++ (C++17 standard) and uses OpenCV (version 4.5.0 and higher) library to perform
forward and backward Fourier transform. The library is compatible with any processors and
operating systems supporting C++ compiler (C++17 standard) and OpenCV library (version 4.5.0 and
higher). The library provides fast calculation, compatibility with low-power processors, high accuracy
and contains a lot of additional functions and modes, which allow using it in camera systems of any
configuration. The library contains an advanced tracking algorithm CSRM developed by
ConstantRobotics Ltd. The library provides tracking of low-contrast and small-sized objects against a
complex background. The library contains a description of the C++ class Cvt. A single instance of the
class provides tracking of a single object on video. To track several objects simultaneously, several
instances of the Cvt class must be created.

LIBRARY FILES

Table 3 – Library source code files.

File Description

CvtDataStructures.h Header file containing constants and declaration of data structures.

Cvt.h Header file containing a description of the Cvt C++ class.

CvtVersion.h A header file containing a description of the library version.

CvtVersion.h.in File containing a description of the version of the library needs to configure
CMake.

Cvt.cpp Cvt C++ class implementation file.

CsrmTracker.h Header file containing a description of the CsrmTracker C++ class that
implements the CSRM video tracking algorithm.

CsrmTracker.cpp CsrmTracker C++ class implementation file.

CMakeLists.txt CMake file to compile the library.

Table 4 – Library files in case delivery in compiled form without source code.

www.constantrobotics.com 5 / 36

File Description

CvtDataStructures.h Header file containing constants and declaration of data structures.

Cvt.h Header file containing a description of the Cvt C++ class.

CvtVersion.h Header file describing the version of the CvTracker library.

Cvt.lib C++ static library file for Windows operating system.

Cvt.a C++ static library file for Linux operating systems.

KEY FEATURES AND CAPABILITIES

Table 5 – Key features and capabilities of the library.

Parameter Value and description

Programming language. C++ (standard C++17) using the OpenCV library (version 4.5.0 and
higher) to perform fast Fourier transforms.

Compatibility with different
operating systems.

Compatible with any operating system that supports the C++
compiler (standard C++17) and the OpenCV library (version 4.5.0
and higher).

Maximum size of the tracking
rectangle.

128x128 pixels. It is possible to track part of an object if it does not
fit into the tracking rectangle. The shape of the tracking rectangle
can be any within the minimum and maximum allowable limits.

Minimum size of the tracking
rectangle.

16x16 pixels. The object can be 2x2 pixels size for normal tracking.

Minimum object size. 2x2 pixels.

The minimum object contrast. 5%. Contrast refers to the ratio of the difference between the
average brightness of pixels belonging to the object and the
average brightness of pixels belonging to the background. The
demo application is designed to evaluate this parameter.

Maximum object offset per 1
frame.

The library provides tracking of objects as they change their
position (change the position of the object center) per one video
frame of up to 110 pixels in any direction. The maximum allowable
object displacement per video frame is determined by the search
window size, which is set by the user.

Discreteness of the calculation
of object coordinates.

1 pixel when estimating the center of an object (center of a tracking
rectangle).

Object size estimation. The library estimates the size and position of an object within the
tracking rectangle to enable automatic adjustment of its position
and size at the operator's command.

Auto adjustment of the tracking
rectangle position.

The library can automatically adjust the position of the tracking
rectangle while tracking an object. This allows to reduce the
probability of tracking failure in the case of tracking dynamic
maneuvering objects. User can enable/disable this function.

Auto adjustment of the tracking
rectangle size.

The library can automatically adjust the size of the tracking
rectangle while tracking an object. This allows to reduce the
probability of tracking failure in the case of tracking dynamic
maneuvering objects. User can enable/disable this function.

Object speed estimation. The library calculates the horizontal and vertical components of
object speed in video frames (pixels per frame).

Changing the parameters. The library allows user to change parameters of the tracking
algorithm even while tracking. Excepts input pixel format and
number of color channels for processing.

Supported pixel formats. Supported pixel formats of input video frames: Grayscale, BGR,
RGB, YUV, YUYV, UYVY and NV12. For each pixel format the
algorithm can use one or more color channels for processing. See
section “Supported pixel formats”.

Maximum and minimum video
frame sizes to be processed.

The maximum size of the video frames for processing is
8192x8192 pixels, the minimum is 240x240 pixels.

www.constantrobotics.com 6 / 36

Parameter Value and description

Calculation time. The library performs calculations for each video frame. Calculation
speed does not depend on video frame sizes, but depends on
library parameters. The main parameters which determine
calculation speed are: 1. search windows size, 2. input pixel
format, 3. number of color channels for processing. The library
does not perform any background tasks. The library uses only
one physical or logical processor core to perform
calculations.

Object loss detection. The library automatically detects when an object is lost and
switches the algorithm into LOST mode – trajectory prediction
mode. When the object detection criteria are met, the library
automatically recaptures the object (TRACKING mode).

Adaptation to object shape and
size changes.

While tracking an object, the library adapts to object shape, size
and brightness changes.

Obstacles processing. If an object is partially (up to 50%) blocked by a barrier, there is no
tracking loss. The performance of the library in specific situations
can be evaluated with the demo application.

Object search window. The size of the object's search area is set by the user in the library's
parameters. The library's tracking algorithm searches object in a
search area whose center coincides with the center of the tracking
rectangle in the previous video frame. The library allows you to set
only the following search area widths: 128 or 256 pixels, and
possible search area heights of 128 or 256 pixels in any
combination. It is recommended that the search area width and
height be set to the same value.

Type of tracking algorithm. The calculations are performed using a modified correlation
tracking algorithm CSRM developed by Constant Robotics Ltd.

STOP-FRAME function and
compensation for
communication delays.

The library allows user to compensate time delays that occur in
communication channels when transmitting object capture
commands. The library also allows you to implement a STOP-
FRAME mode to assist the operator in capturing dynamic objects.
The duration of the STOP-FRAME mode can be set in the library
parameters (see “Library parameters”).

Note: The values in the table are applied to the concept of video frame(s) and the concept of pixel.

LIBRARY PRINCIPLE

HOW THE TRACKING ALGORITHM WORKS

The principle of operation, implemented in the library algorithms CSRM based on correlation

search. Correlation search in this case means direct “pixel to pixel” comparison of rectangular parts of
processed frame with pattern of tracking object by calculating some measure of comparison (correlation
function) with subsequent selection of that part of processed video frame which has the greatest
similarity with pattern (has the highest value of correlation function). At the moment of object capturing,
the rectangular area of the video frame (capture rectangle) specified in the capture parameters (position
and size) is taken as the object reference image, on the basis of which the pattern is formed. The
algorithm then searches an object in each frame of the video in particular search window. Search
window is area bounded by the algorithm's parameters with the center coinciding with the calculated
center of the tracking rectangle on the previous video frame (or the center of the capture rectangle if
the first frame after capture is being processed). The calculated most probable position of the tracking
object (with highest value of correlation function) in the current video frame (calculated center of the
tracking rectangle) is taken as the coordinates of the object. The tracking algorithm considers the

www.constantrobotics.com 7 / 36

probability of object presence (based on the motion parameters of the object) at a particular frame
position. Figure 1 shows object search principle.

Figure 1 – Object search principle in a video frame.
(1 – object image on the current frame, 2 – tracking rectangle calculated after processing of the

current frame, 3 – position of the tracking rectangle on the previous frame, 4 – object search window
on the current frame relative to the position of the tracking rectangle on the previous frame, 5 –

current video frame)

Figure 1 shows a schematic representation of a video frame (5) that contains an image of a

object (1). Assume that on the previous video frame the object was in the area corresponding to area
(3), which is the area of the tracking rectangle (the most probable position of the object) in the previous
video frame. The library performs object search in the area (4) whose center coincides with the position
of the center of the tracking rectangle (3) in the previous video frame.

The tracking algorithm does not distinguish between pixels belonging to an object or background
within the tracking rectangle immediately after capturing an object. Over time (as several frames are
processed), the algorithm estimates whether a pixel within the tracking rectangle belongs to an object
or to the background. Based on this information, the algorithm improves the quality of further tracking
and estimates the size and position of the object (object image) within the tracking rectangle to enable
subsequent automatic parameter adjustments at the operator's command or fully automatic.

Calculation of object movement (horizontal and vertical velocity components) is performed for
each processed video. For each processed video frame, the algorithm calculates the position of the
center of the tracking rectangle, the position and size of the object rectangle (the rectangle describes
the size of the object image) in the tracking rectangle, and the speed components of the tracking object
on the video frames (pixels per frame). The algorithm performs object search in search window (in all
possible positions of object within search window). The algorithm generates a surface of the spatial
distribution of the probability (correlation surface) of the object presence in the search window. Once
the surface is formed, it is analyzed to determine the most probable position of the object on the
processed video frame (position of maximum value of the correlation surface).

SUPPORTED PIXEL FORMATS

The library supports the following pixel formats: Grayscale 8 bit, RBG 24 bits (8 bit for each

color components), BGR 24 bits (8 bit for each color components), YUV 24 bits (8 bit for each color
components), YUYV (YUY2, 8 bit for each color components), UYVY (8 bit for each color component)
and NV12 (8 bit for each color components). For each input pixel format the user can set number of
color channels for processing. Number of channels determines calculation time. Table 6 shows color
components layout for each supported pixel format. The library interprets input data according to input
pixel format set by user in advance (before video frames processing). Warning: the input pixel format
and number of color channels for processing must be set in advance (before first video frame
processing).

www.constantrobotics.com 8 / 36

Table 6 – Illustrations of 4x4 pixels image bytes order in various formats.

RGB 24 bits pixel format.

BGR 24 bits pixel format.

UYVY pixel format.

YUYV (YUY2) pixel format.

Grayscale pixel format.

YUV 24 bits pixel format.

NV12 pixel format.

For each pixel format the user can set number of color channels. The number of color channels

for processing must be set via setParam(…) method of Cvt C++ class. Table 7 shows possible
combination of pixel format and number of channels.

Table 7 – Combinations of pixel format and number of color channels for processing.

Num channels Description

BGR – maximum 4 channel (3 colors + grayscale)

1 The library will convert BGR video frame to Grayscale format.

2 The library will use only B and G channels.

3 The library will use B, G and R channels.

4 The library will use B, G and R channels and will make Grayscale channel.

RGB – maximum 4 channel (3 colors + grayscale)

1 The library will convert BGR video frame to Grayscale format.

2 The library will use only R and G channels.

3 The library will use B, G and R channels.

4 The library will use B, G and R channels and will make Grayscale channel.

YUV – maximum 3 channel (3 color components). If set 4 channels the library will switch to 3 channels
automatically.

1 The library will use Y channel (Grayscale).

www.constantrobotics.com 9 / 36

2 The library will use Y and U channel.

3 The library will use Y, U and V channels.

YUYV (YUY2) – maximum 3 channel (3 color components). If set 4 channels the library will switch to
3 channels automatically.

1 The library will use Y channel (Grayscale).

2 The library will use Y and U channel.

3 The library will use Y, U and V channels.

UYVY – maximum 3 channel (3 color components). If set 4 channels the library will switch to 3
channels automatically.

1 The library will use Y channel (Grayscale).

2 The library will use Y and U channel.

3 The library will use Y, U and V channels.

Grayscale – maximum 1 grayscale channel. If set > 1 channel the library will switch to 1 channel
automatically.

1 The library will use only one Grayscale channel.

STOP-FRAME FUNCTION

If a moving object needs to be captured, this can often be difficult for the user because they

need to align the tracking rectangle with an object that keeps changing its position on the video frames.
In addition, it is difficult to capture a stationary object in case of camera vibration. To help the user
capture an object in challenging dynamic environments, the library has a STOP-FRAME function. This
function allows the user to stop the video playback and accurately capture an object on a stopped video
frame.

The function works as follows: video frames is put to the library for processing frame-by-frame.
The library places frames in a ring buffer of the size specified by user in library parameters (see “Library
parameters”). The tracking data contains an index corresponding to the position of the frame added to
the ring buffer and is transmitted to the control system via communication channel. The user of the
control system sees the video from the cameras on the monitor. Each video frame has its own identifier
assigned by the tracking algorithm. The user can stop video playback, move the capture rectangle to
an object on a stopped video frame and capture. When a capture command is formed, it includes a
video frame identifier corresponding to the displayed video frame. When a capture command is received
by the library, the object is captured on the frame in the frame buffer according to the identifier specified
in the capture command. The video frame on which the object is captured will be some time behind the
current video frame from the camera (the number of frames corresponding to the time the control
system operator “stops” the video, with the addition of the delay time in the communication channels).
After a capture, the algorithm switches to tracking mode. When processing subsequent frames, the
library sequentially processes the frames in the frame buffer, starting with the frame where the object
was captured. When a processing method of the library method is called, multiple frames are processed
to “catch up” the current video frame. In this way the library “catches up” the current video frame from
the camera in a short time and enters normal tracking mode. This function significantly reduces the
skills requirements for users of tracking systems. WARNING: until the library has “caught up” the current
video frame, it is not recommended to turn the pan-tilt systems. This may result in incorrect operation
of the tracking systems.

СOMMUNICATION CHANNEL DELAY COMPENSATION

When controlling the tracking system remotely (via communication channels), communication

delays negatively affect the quality of the object being captured by the user. Video captured by the
tracker device is compressed and transmitted to the control system with some delay. When the operator
captures object the generated capture command also arrives at the tracker device with some delay.
The capture command contains the coordinates of the capture rectangle center. When capturing a

www.constantrobotics.com 10 / 36

dynamic object, due to time delays in the communication channels, the captured area will not match
the object. Figure 2 shows the displacement between capture rectangle and real object position.

Figure 2 – Position error of the capture rectangle.

Figure 2 shows a video frame coming into the tracker device from the camera (left) and a video

frame displayed to a user of the control system (right) at the same point of time. Assume that the video
frame captured from the camera is simultaneously put to the tracking algorithm and sent to the control
system. At time T1, the object was at one frame position. This frame after some time (encoding time +
video frame transmission time + decoding time + display time) is displayed to the operator (user), who
performs object capture. For operator the object position is corresponding to the time T1. Once an object
has been captured, the capture command is sent to the tracking algorithm with some delay (command
generation time + command transmission time + command decoding time) (time moment T2). The
algorithm captures an object in the current video frame. If the object is moving, the error (horizontally
and vertically) in the position of the capture rectangle will be as follows:

∆𝑋 = (𝑇2 − 𝑇1) ∗ 𝑉𝑥 , (2)

∆𝑌 = (𝑇2 − 𝑇1) ∗ 𝑉𝑦, (3)

where: ∆𝑋 – horizontal position error in pixels; ∆𝑌 – vertical position error in pixels; 𝑇1 – the point in time

corresponding to the frame displayed to the user; 𝑇2 – the point in time corresponding to the current
video frame; 𝑉𝑥 – the horizontal component of the speed of an object in video frames (pixels per frame);
𝑉𝑦 – the vertical component of the speed of the object in the video frames (pixels per frame).

To compensate for errors that occur, a video frame identifier must be included in the capture
command. The principle for compensating of time delays in communication channels is identical to that
of the STOP-FRAME function (see “STOP-FRAME function”).

OPERATION MODES

Table 8 – Tracking algorithm operating modes.

Mode Description

FREE – free mode. In this mode, the library does not perform any calculations. The library only
adds video frames to the frame buffer. Conditions for entering FREE mode:

1. Once the Cvt C++ class has been initialized. This mode is the default
mode.

2. Automatically when the automatic tracking reset criteria are met (see
“Criteria for automatic change of operation modes”).

3. After command “RESET” (see “Library control commands”).

TRACKING –
tracking mode.

In this mode the library calculates the automatic tracking and updates all
calculated (estimated) object parameters. Criteria for entering TRACKING
mode:

1. After the “CAPTURE” command.

www.constantrobotics.com 11 / 36

Mode Description

2. Automatically from LOST mode when object detection criteria are met
(see “Criteria for automatic change of operating modes”).

LOST – object loss
mode.

In this mode, the library searches object for automatic reсapturing (switching
to TRACKING mode) and updates it’s coordinates in one of the ways specified
in the parameters. LOST mode contains the following additional modes:

0. Tracking rectangle coordinates are not updated (remain the same as
before entering LOST mode).

1. The tracking rectangle coordinates are updated based on the
components of the object's speed calculated before going into LOST
mode. When the tracking rectangle reaches any edge of the frame, the
coordinate update in the corresponding direction stops.

2. The tracking rectangle coordinates are updated based on the
components of the speed of objects in the video frames calculated
before going into LOST mode. When the tracking reset criteria is met,
the device switches to FREE mode.

Criteria for entering LOST mode:
1. Automatically when object loss is detected (see section “Criteria for

automatic change of operating modes”).
2. On command from TRACKING mode.
3. On command from INERTIAL mode.
4. On command from STATIC mode.

INERTIAL – inertial
tracking mode.

In this mode the library does not search for an object to recapture automatically,
but only updates the coordinates of the tracking rectangle based on the
previously calculated velocity components of the objects. Criteria for entering
INERTIAL mode:

1. On command from TRACKING mode.
2. On command from LOST mode.
3. On command from STATIC mode.

STATIC – static
mode.

This mode does not perform any calculations and the tracking rectangle
coordinates remain the same as before going into this mode. This mode is
necessary to “freeze” the tracking algorithm for a certain number of frames. For
example, if the tracking system is exposed to strong vibrations, it is possible to
“freeze” the tracking algorithm until the vibration ends.

Figure 3 shows the operating mode graph and the possible transitions between them. Also

shown in the graph are commands (according to the CvtCommand structure, see “Library control
commands”) designed to change the modes of operation. The words auto in figure 3 indicate the ability
to change the mode automatically if the relevant criteria are met (see “Criteria for automatic change of
operating modes “).

Figure 3 – Operation modes of the tracking algorithm.
(Auto – automatic mode change capability)

www.constantrobotics.com 12 / 36

CRITERIA FOR AUTOMATIC CHANGE OF OPERATION MODES

Figure 3 shows the graph of operation modes. There are the following conditions for automatic

mode changes (word “AUTO” in figure 3):
1. Automatic switching from TRACKING to FREE mode is possible only if the tracking

rectangle center has touched (coincided in coordinates) any of the video frame edges.
2. The automatic switching from TRACKING to LOST mode is possible when an object loss is

detected – when the calculated object detection probability falls below the threshold.
3. Automatic switching from LOST to TRACKING mode is possible when an object is detected

again after a loss – when the calculated object detection probability exceeds the threshold.
4. Automatic reset of tracking in the LOST mode (switch to FREE mode) is possible when the

center of the tracking rectangle touches the edge of the video frame (if the LOST mode
option set to 2), as well as when the number of frames specified in the parameters has
expired, at which the algorithm is continuously in LOST mode.

5. Automatic reset of tracking in INERTIAL mode (switch to FREE mode) is possible when the
center of the tracking rectangle reaches the edge of the frame.

HOW TO USE THE LIBRARY

HOW TO USE THE LIBRARY

The library consists of a few source code files: Cvt.h, Cvt.cpp, CsrmTracker.h,

CsrmTracker.cpp, CvtDataStructures.h and CvtVersion.h. When delivered compiled version, the
library includes four files: Cvt.h, Cvt.a (for Linux) or Cvt.lib (for Windows), CvtDataStructures.h and
CvtVersion.h. To use the library, the developer must include the listed files in C++ project. The Cvt.h
file contains the declaration of the Cvt С++ class, which implements the tracking algorithm. The way of
use of the library (source code of simple test application given in section “Simple demo application”):

1. Connect the tracking library files and OpenCV library to your project.
2. Create an instance of the Cvt C++ class.
3. Set parameters of the library through calling the setParam(...) method, if necessary.
4. Call the processFrame(...) method to process the next video frame.
5. To perform commands use executeCommand(...) method.
6. The getResults(...) method is used to get the tracking results.

LIBRARY PARAMETERS

The library and tracking algorithm parameters are set by calling the setParam(...) method of the

Cvt C++ class. The list of available parameters is contained in the CvtParam enum declared in the
CvtDataStructures.h file. The declaration of CvtParam enum:

enum class CvtParam

{

 FRAME_BUFFER_SIZE = 1,

 TRACKING_RECTANGLE_WIDTH,

 TRACKING_RECTANGLE_HEIGHT,

 SEARCH_WINDOW_X,

 SEARCH_WINDOW_Y,

 SEARCH_WINDOW_WIDTH,

 SEARCH_WINDOW_HEIGHT,

 LOST_MODE_OPTION,

www.constantrobotics.com 13 / 36

 MAXIMUM_NUM_FRAMES_IN_LOST_MODE,

 USE_TRACKING_RECTANGLE_AUTO_SIZE,

 USE_TRACKING_RECTANGLE_AUTO_POSITION,

 INPUT_FORMAT,

 NUM_CHANNELS

};

Table 9 – Description of the library parameters.

Parameter Description

FRAME_BUFFER_SIZE Frame buffer size. Default value 2. When processing the
next video frame, the library copies the frame data to the
buffer for further processing according to input pixel format
and number of color channels for processing. The frame
buffer is required for the STOP-FRAME function and to
compensate time delay in communication channels (see
“STOP-FRAME function”). The size of the frame buffer
determines the time delay that the library can compensate
for object capture. The possible delay can be calculated
as follows:

𝑇 = 𝐹𝑅𝐴𝑀𝐸_𝐵𝑈𝐹𝐹𝐸𝑅_𝑆𝐼𝑍𝐸 ∗
1000

𝑓𝑝𝑠
,

where: 𝑇 – the maximum time delay (msec) that the library
can compensate for; 𝑓𝑝𝑠 – the number of frames per
second coming from the video source.
Valid value from 2 to 1024.

TRACKING_RECTANGLE_WIDTH Width of tracking rectangle. The default value is 64. Valid
values are from 16 to 128.

TRACKING_RECTANGLE_HEIGHT Height of tracking rectangle. The default value is 64.
Valid values are from 16 to 128.

SEARCH_WINDOW_X Horizontal position of the center of the object search
window. The center of the search area after the next frame
is processed always coincides with the center of the
tracking rectangle. The user can change the position of the
search windows center for the next video frame by setting
the coordinate value using the setParam(…) method. After
processing the next video frame, the position of the center
of the search area will again coincide with the calculated
center of the tracking rectangle.

SEARCH_WINDOW_Y Vertical position of the center of the object search window.

SEARCH_WINDOW_WIDTH The width of the search area. The default value is 256
pixels. The parameter can only take values of 128 or 256.
Note: The width of the search area must be less than or
equal to the width of the tracking rectangle
(TRACKING_RECTANGLE_WIDTH parameter). The size
of the search area determines the speed of the calculation:
the smaller the search area, the faster the calculation.

SEARCH_WINDOW_HEIGHT The height of the search area. The default value is 256
pixels. The parameter can only take values of 128 or 256.
Note: The height of the search area must be less than or
equal to the height of the tracking rectangle
(TRACKING_RECTANGLE_HEIGHT parameter). The
size of the search area determines the speed of the
calculation: the smaller the search area, the faster the
calculation.

www.constantrobotics.com 14 / 36

Parameter Description

LOST_MODE_OPTION Parameter that defines the behavior of the tracking
algorithm in LOST mode. Default is 0. Possible values:

0. In LOST mode, the coordinates of the center of the
tracking rectangle are not updated and remain the
same as before entering LOST mode.

1. The coordinates of the center of the tracking
rectangle are updated based on the components
of the object’s speed calculated before going into
LOST mode. If the tracking rectangle “touches” the
edge of the video frame, the coordinate updating
for this component (horizontal or vertical) will stop.

2. The coordinates of the center of the tracking
rectangle are updated based on the components
of the object’s speed calculated before going into
LOST mode. The tracking is reset if the center of
the tracking rectangle touches any of the edges of
the video frame.

MAXIMUM_NUM_FRAMES_IN
_LOST_MODE

Maximum number of continuous video frames in LOST
mode, after which the library performs an automatic
tracking reset (see “Criteria for automatic mode changes”).
The default value is 256.

USE_TRACKING_RECTANGLE
_AUTO_SIZE

The flag of necessity of automatic tracking rectangle size
adjustment during object tracking. Automatic tracking
rectangle size adjustment allows to track maneuvering
objects effectively when their size and shape change. The
default value is 0 (the function is disabled). Any value
other than 0 indicates the necessity to use this function.

USE_TRACKING_RECTANGLE
_AUTO_POSITION

The flag of necessity of automatic tracking rectangle
position adjustment during object tracking. Automatic
adjustment of tracking rectangle position allows to track
maneuvering objects effectively when their angle is
changed. The algorithm smoothly shifts the tracking
rectangle to the center of the object. The default value is
1 (enabled). Any value other than 0 indicates the
necessity to use this function.

INPUT_FORMAT Index of input pixel format: 0 – Grayscale (default). 1 –
NV12. 2 – BGR. 3 – RGB. 4 – YUV. 5 – YUYV (YUY2). 6
– UYVY. Warning: the input pixel format must be set
in advance before first video frame processing. See
“Supported pixel formats” section.

NUM_CHANNELS Number of color channels for processing. See “Supported
pixel formats” section. Warning: the number of color
channels for processing must be set in advance
before first video frame processing.

LIBRARY CONTROL COMMANDS

The library and tracking algorithm are controlled using the executeCommand(...) method. The

list of commands available listed in union CvtCommand declared in the file CvtDataStructure.h. The
declaration of the CvtCommand enum:

enum class CvtCommand

{

www.constantrobotics.com 15 / 36

 CAPTURE = 1,

 RESET,

 SET_INERTIAL_MODE,

 SET_LOST_MODE,

 SET_STATIC_MODE,

 SET_TRACKING_RECTANGLE_AUTO_SIZE,

 SET_TRACKING_RECTANGLE_AUTO_POSITION,

 MOVE_TRACKING_RECTANGLE,

 SET_TRACKING_RECTANGLE_POSITION,

 SET_TRACKING_RECTANGLE_POSITION_PERCENTS,

 CHANGE_TRACKING_RECTANGLE_SIZE,

 CAPTURE_PERCENTS

};

Table 10 – Library control commands.

Command Description

CAPTURE Object capture command. If the tracking algorithm is not in
FREE mode, the reset command will be executed first and then
the object will be captured.

RESET Tracking reset command. Switches the tracking algorithm to
FREE mode from any other mode.

SET_INERTIAL_MODE Command to switch the tracking algorithm into INERTIAL mode
from TRACKING, LOST and STATIC modes.

SET_LOST_MODE Command to switch the tracking algorithm into LOST mode
from TRACKING, INERTIAL and LOST modes.

SET_STATIC_MODE Command to switch the algorithm into STATIC mode from
TRACKING, LOST and INERTIAL modes.

SET_TRACKING_RECTANGLE
_AUTO_SIZE

Command to automatically adjust the position and size of the
tracking rectangle. In TRACKING mode, for each processed
video frame, the library calculates the position and size of the
object rectangle within the tracking rectangle. If an object has
not been captured optimally (e.g. over the edge of the object) or
if the tracking rectangle has moved to the edge of the object
during tracking, the operator can correct the position and size
of tracking rectangle without reset and re-capture object, and
without having to manually control the size and position of the
tracking rectangle. This command shifts the position of the
tracking rectangle so that the object is in the center of the
tracking rectangle and sets the size of the tracking rectangle to
50% larger horizontally and vertically than the object size.

SET_TRACKING_RECTANGLE
_AUTO_POSITION

The command to automatically correct the position of the
tracking rectangle in TRACKING mode. In TRACKING mode,
the library calculates the position and size of the object
rectangle in the tracking rectangle for each processed video
frame. When this command is executed, the library shifts the
tracking rectangle so that the object is in the center of the
tracking rectangle.

MOVE_TRACKING_RECTANGLE Tracking rectangle position correction command in TRACKING
mode. If an object is captured over the edge of the object or if
the tracking rectangle is displaced during tracking, the operator
has the option of correcting the position of the tracking rectangle
without having to reset and re-capture object.

SET_TRACKING_RECTANGLE
_POSITION

Set tracking rectangle position in FREE mode. In command the
user must set horizontal and vertical position of the tracking
rectangle center. In FREE mode the algorithm doesn’t change

www.constantrobotics.com 16 / 36

Command Description

position of tracking rectangle but user can manual change
tracking rectangle position in library’s result data.

SET_TRACKING_RECTANGLE
_POSITION_PERCENTS

Set tracking rectangle position in FREE mode. In command the
user must set horizontal and vertical position of the tracking
rectangle center in precents of frame width/height multiple by
1000. In FREE mode the algorithm doesn’t change position of
tracking rectangle but user can manually change tracking
rectangle position in library’s result data.

CHANGE_TRACKING
_RECTANGLE_SIZE

Change current tracking rectangle size in all modes. In
command the user must set add (+/-) to the size of the
rectangle.

CAPTURE_PERCENTS Capture object with coordinates in percent of frame width/height
multiple by 1000.

OBTAINING IMAGES FROM LIBRARY

The library allows the user to obtain images of the internal matrices of the tracking algorithm.

The available matrices are listed in the enum CvtImage, declared in the file CvtDataStructures.h. The
declaration of the CvtImage enum:

enum class CvtImage

{

 PATTERN_IMAGE = 1,

 MASK_IMAGE,

 CORRELATION_SURFACE_IMAGE

};

Table 11 – Internal matrices of the tracking algorithm.

Matrix Description

PATTERN_IMAGE The reference image of the object. The reference image is generated at the
moment the object is captured and updated during tracking. The size of the
reference image is always 256x256 pixels.

MASK_IMAGE Object mask image. Object mask is matrix from which the algorithm
calculates the position and size of the object (object rectangle) into the
tracking rectangle. The size of the object mask is always 256x256 pixels.

CORRELATION
_SURFACE_IMAGE

The image of the surface of the probability distribution (correlation surface)
relative to the position of the center of the tracking rectangle on the previous
video frame. The size of the probability distribution surface is always equal
to the maximum size of the search window of 256x256 pixels.

RESULTS STRUCTURE

For each processed video frame, the library updates the CvtResults structure declared in the

CvtDataStructures.h file. The CvtResults structure:

typedef struct

{

 int mode;

 int trackingRectangleCenterX;

 int trackingRectangleCenterY;

www.constantrobotics.com 17 / 36

 int trackingRectangleWidth;

 int trackingRectangleHeight;

 int objectCenterX;

 int objectCenterY;

 int objectWidth;

 int objectHeight;

 int frameCounterInLostMode;

 int frameCounter;

 int frameWidth;

 int frameHeight;

 int searchWindowWidth;

 int searchWindowHeight;

 int searchWindowCenterX;

 int searchWindowCenterY;

 int lostModeOption;

 int frameBufferSize;

 int maximumNumberOfFramesInLostMode;

 int trackerFrameID;

 int bufferFrameID;

 float horizontalObjectVelocity;

 float verticalObjectVelocity;

 float objectDetectionProbability;

 bool useTrackingRectangleAutoSize;

 bool useTrackingRectangleAutoPosition;

} CvtResults;

Table 12 – Description of the CvtResults structure fields.

Field Description

mode Tracking algorithm mode: 0 – FREE, 1 – TRACKING, 2 – LOST, 3 –
INERTIAL, 4 – STATIC. See “Operational modes”.

trackingRectangleCenterX Horizontal coordinate of the center of the tracking rectangle.

trackingRectangleCenterY Vertical coordinate of the center of the tracking rectangle.

trackingRectangleWidth Width of the tracking rectangle.

trackingRectangleHeight Height of the tracking rectangle.

objectCenterX Horizontal coordinate of the object rectangle center. During tracking,
the algorithm estimates the position and size of the object in the tracking
rectangle. This information can be used by the user to adjust the size
and position of the tracking rectangle.

objectCenterY Vertical coordinate of the object rectangle center.

objectWidth Width of the object rectangle.

objectHeight Height of the object rectangle.

frameCounterInLostMode Frame counter in LOST mode. The counter is reset to 0 when you go
to LOST mode and counts the number of frames while the algorithm is
in this mode.

frameCounter Frame counter from the moment an object is captured.

frameWidth Width of video frames.

frameHeight Height of video frames.

searchWindowWidth Width of search window.

searchWindowHeight Height of search window.

searchWindowCenterX The horizontal coordinate of the center of the search window for the
next video frame.

searchWindowCenterY The vertical coordinate of the center of the search window for the next
video frame.

www.constantrobotics.com 18 / 36

Field Description

lostModeOption Mode of updating coordinates of object rectangle center in LOST mode
(see “Tracking algorithm options”).

frameBufferSize Frame buffer size.

maximumNumberOf
FramesInLostMode

Maximum number of video frames in LOST mode before automatic
tracking reset.

trackerFrameID Identifier of the last video frame processed by the tracking algorithm.
The video frame ID is the index of the frame in the frame buffer.

bufferFrameID Identifier of the last frame added to the buffer. The video frame identifier
is an index of the frame in the frame buffer and is used to implement
the STOP-FRAME function and to compensate for communication
delays (see “STOP-FRAME function” and “Communication channel
delay compensation”).

horizontalObjectValocity The horizontal component of the velocity of an object in video frames
(pixels per frame).

verticalObjectVelocity The vertical component of the velocity of an object in video frames
(pixels per frame).

objectDetectionProbability The current value of the object detection probability calculated by the
library for the last video frame processed.

useTrackingRectangle
AutoSize

The flag of the active mode of automatic adjustment of the tracking
rectangle size during object tracking.

useTrackingRectangle
AutoPosition

The flag of the active mode of automatic adjustment of the tracking
rectangle position during object tracking.

TRACKING ALGORITHM CLASS DESCRIPTION

Declaration of the Cvt class

The Cvt C++ class is declared in the Cvt.h file. The declaration of the Cvt C++ class:

namespace cr

{

namespace vtracker

{

class Cvt

{

public:

 static std::string getVersion();

 Cvt();

 ~Cvt();

 bool setParam(CvtParam id, float value);

 float getParam(CvtParam id);

 bool processFrame(uint8_t *frame, int width, int height, int timeoutMsec = 0);

www.constantrobotics.com 19 / 36

 bool executeCommand(CvtCommand id, int arg1 = -1, int arg2 = -1,

 int arg3 = -1, uint8_t* arg4 = nullptr);

 CvtResults getResults();

 bool getImage(CvtImage type, uint8_t* image);

};

}

}

Table 13 – Cvt C++ class methods.

Method Description

Cvt() Class constructor.

~Cvt() Class destructor.

setParam(…) Set library parameter.

getParam(…) Get library parameter.

processFrame(…) Process video frame.

executeCommand(…) Execute command.

getResults() Get results data.

getImage(…) Get image from library.

getVersion() Get library version.

setParam(…) method

The setParam(…) method is intended to modify library parameters. The declaration of the

method:

bool setParam(CvtParam id, float value);

Parameters:

id Parameter ID (see “Library parameters”).

value Parameter value.

Return value:
The method returns TRUE if the parameter is set. Otherwise, the method returns FALSE.

getParam(…) method

The getParam(...) method is intended to get the value of a library parameter. The declaration of

the method:

float getParam(CvtParam id);

Parameters:

id Parameter ID to retrieve (see “Library parameters”).

Return value:
The method returns the value of the parameter or returns -1 if the parameter with this identifier does
not exist.

www.constantrobotics.com 20 / 36

processFrame(…) method

The processFrame(...) method processes the video frame. The declaration of the method:

bool processFrame(uint8_t *frame, int width, int height, int timeoutMsec = 0);

Parameters:

frame Pointer to frame data according to pixel format set in advance (see “Supported pixel
formats”).

width Width of video frames to be processed.

height Height of video frames to be processed.

timeoutMsec The time limit in which the method must return control. If the value is 0, it tells the
method to process all new video frames added to the buffer. The time interval must
be set based on the frequency of the frames to be processed. The time interval
must correspond to at least two periods of video frames for the STOP-FRAME
function to be implemented.

The first time the method is called, the library allocates memory for the frame buffer. The method

copies the video frame data to the frame buffer and processes it if the tracking algorithm is not in FREE
mode. If a frame has a different size than the last frame (width and heigh), the library resets tracking,
releases frame buffer memory and reinitialize it according to the new video frame size. If the processed
frame is not the last frame added to the buffer, the method processes the frames in sequence until the
last frame added to the buffer is processed or until the specified time (timeoutMsec parameter) expires.

Return value:
Method returns TRUE if frame is successfully added to buffer and processed. Method returns FALSE,
if width and/or height of video frame are 0.

executeCommand(…) method

The executeCommand(...) method is used to execute a command. The declaration of the

method:

bool executeCommand(CvtCommand id, int arg1 = -1, int arg2 = -1, int arg3 = -1,

 uint8_t* arg4 = nullptr);

Parameters:

id Command ID according to CvtCommand enum (see “Library control commands”).

arg1 The first argument. Has different meaning depends on the command:

CAPTURE Horizontal coordinate of center of tracking
rectangle.

RESET not used.

SET_INERTIAL_MODE not used.

SET_LOST_MODE not used.

SET_STATIC_MODE not used.

SET_TRACKING_
RECTANGLE_AUTO_SIZE

not used.

MOVE_TRACKING_RECTANGLE Horizontal offset of the tracking rectangle.

SET_TRACKING
_RECTANGLE_POSITION

Horizontal position of tracking rectangle
center.

SET_TRACKING_RECTANGLE
_POSITION_PERCENTS

Horizontal position of tracking rectangle
center.

www.constantrobotics.com 21 / 36

CHANGE_TRACKING
_RECTANGLE_SIZE

Add to tracking rectangle width.

CAPTURE_PERCENTS Horizontal position of tracking rectangle
center in percents multiple by 1000.

arg2 The second argument. Has different values depending on the command:

CAPTURE Vertical coordinate of center of tracking
rectangle.

RESET not used.

SET_INERTIAL_MODE not used.

SET_LOST_MODE not used.

SET_STATIC_MODE not used.

SET_TRACKING_RECTANGLE
_AUTO_SIZE

not used.

MOVE_TRACKING_RECTANGLE Vertical offset of the tracking rectangle in
pixels.

SET_TRACKING
_RECTANGLE_POSITION

Vertical position of tracking rectangle
center.

SET_TRACKING_RECTANGLE
_POSITION_PERCENTS

Vertical position of tracking rectangle
center.

CHANGE_TRACKING
_RECTANGLE_SIZE

Add to tracking rectangle width.

CAPTURE_PERCENTS Vertical position of tracking rectangle
center in percents multiple by 1000.

arg3 The third argument. Only used in the CAPTURE command and is the identifier of
the frame on which you want to perform a object capture. A value of -1 instructs the
library to perform a tracking object capture on the last frame added to the buffer. If
the frame ID is greater than or equal to 0, the arg4 parameter will be ignored.

arg4 Not used.

Return value:
The method returns TRUE if the command was executed successfully. Otherwise, it returns FALSE.

getResults(…) method

The getResults(...) method is designed to get the current tracker result data (see “Results

structure”). The declaration of the method:

CvtResults getResults();

Return value:
Method returns CvtResults structure (see “Results structure”).

getImage(…) method

The getImage(...) method is designed to retrieve images of the internal matrices of the tracking

algorithm. The declaration of the method:

bool getImage(CvtImage type, uint8_t* image);

www.constantrobotics.com 22 / 36

Parameters:

type The type of image to be obtained (see “Obtaining images”). The following are
available to the user: PATTERN_IMAGE – reference image of an object,
MASK_IMAGE – object mask image, CORRELATION_SURFACE_IMAGE –
image of the distribution surface of the probability of object detection.

image A pointer to the image buffer to be filled. All generated images are in Grayscale
format (1 byte per pixel in grayscale). Image buffer size should correspond to
256x256 pixels in mono8 format = 65536 bytes.

Return value:
Method returns TRUE if image buffer is full. The method returns FALSE if the specified identifier of the
received image type does not exist.

getVersion() method

The static method getVersion() is designed to get the string of the current library version. The

declaration of the method is given below.

static std::string getVersion();

Return value:
The method returns a string of the current software library version in the format “8.0.0”.

The method can be called without creating an object of the Cvt class, as shown below.

cout << "Cvt lib v" << Cvt::getVersion() << endl;

EXAMPLE OF USING THE LIBRARY

SIMPLE DEMO APPLICATION

Below is the source code for a simple demo application to test the library. It uses the OpenCV

open source library to capture video frames and create the user interface.

#include <opencv2/opencv.hpp>

#include "Cvt.h"

// Link namespaces.

using namespace cv;

using namespace std;

using namespace cr::vtracker;

// Global variables.

Cvt g_tracker;

int g_frameWidth = 0;

int g_frameHeight = 0;

www.constantrobotics.com 23 / 36

// Prototype of mouse callback function.

void MouseCallBackFunc(int event, int x, int y, int flags, void* userdata);

// Entry point.

int main(void)

{

 cout << "==" << endl;

 cout << "Simple Demo Application for CVT v" << Cvt::getVersion() << endl;

 cout << "==" << endl;

 // Dialog to enter video source init string.

 string initString = "0";

 cout << "Enter video source init string "

 << "(camera num, rtsp string, video file): ";

 cin >> initString;

 cout << initString << endl;

 // Open video source.

 VideoCapture videoSource;

 bool result = false;

 if (initString.size() < 5)

 result = videoSource.open(stoi(initString));

 else

 result = videoSource.open(initString);

 if (result == false)

 {

 cout << "ERROR: Video source not open" << endl;

 return -1;

 }

 // Init variables.

 Mat frame;

 Mat yuvFrame;

 CvtResults trackerData;

 // Set tracker parameters.

 g_tracker.setParam(CvtParam::TRACKING_RECTANGLE_WIDTH, 72);

 g_tracker.setParam(CvtParam::TRACKING_RECTANGLE_HEIGHT, 72);

 g_tracker.setParam(CvtParam::LOST_MODE_OPTION, 0);

 // Set YUV input data format.

 g_tracker.setParam(CvtParam::INPUT_FORMAT, 4);

 // Set 3 channels (Y, U and V).

 g_tracker.setParam(CvtParam::NUM_CHANNELS, 3);

 // Init OpenCV window.

 namedWindow("Simple demo application", WINDOW_AUTOSIZE);

 // Set mouse callback.

 setMouseCallback("Simple demo application", MouseCallBackFunc, nullptr);

 // Main loop.

 while (true)

www.constantrobotics.com 24 / 36

 {

 // Capture next video frame.

 videoSource >> frame;

 if (frame.empty())

 {

 // If we have video file we can set initial position to replay.

 videoSource.set(CAP_PROP_POS_FRAMES, 0);

 continue;

 }

 // Update frame size.

 g_frameWidth = frame.size().width;

 g_frameHeight = frame.size().height;

 // Convert to YUV format.

 cvtColor(frame, yuvFrame, COLOR_BGR2YUV);

 // Process video frame.

 g_tracker.processFrame(

 yuvFrame.data, yuvFrame.size().width, yuvFrame.size().height);

 // Get current tracker data.

 trackerData = g_tracker.getResults();

 // Choose tracking rectangle color according to tracker mode.

 Scalar rectColor;

 switch (trackerData.mode) {

 case CVT_FREE_MODE_INDEX: rectColor = Scalar(255, 255, 255); break;

 case CVT_TRACKING_MODE_INDEX: rectColor = Scalar(0, 0, 255); break;

 case CVT_LOST_MODE_INDEX: rectColor = Scalar(255, 0, 0); break;

 default: rectColor = Scalar(255, 255, 255); break; }

 // Draw tracking rectangle.

 Rect rect(trackerData.trackingRectangleCenterX -

 trackerData.trackingRectangleWidth / 2,

 trackerData.trackingRectangleCenterY -

 trackerData.trackingRectangleHeight / 2,

 trackerData.trackingRectangleWidth,

 trackerData.trackingRectangleHeight);

 rectangle(frame, rect, rectColor, 2);

 // Show video with tracker result information.

 imshow("Simple demo application", frame);

 // Wait keyboard events.

 switch (waitKey(25))

 {

 // ESC - Exit.

 case 27:

 destroyAllWindows();

 return 1;

www.constantrobotics.com 25 / 36

 // W - Increase tracking rectangle height.

 case 119:

 g_tracker.executeCommand(

 CvtCommand::CHANGE_TRACKING_RECTANGLE_SIZE, 0, 8);

 break;

 // S - Decrease tracking rectangle height.

 case 115:

 g_tracker.executeCommand(

 CvtCommand::CHANGE_TRACKING_RECTANGLE_SIZE, 0, -8);

 break;

 // D - Increase tracking rectangle width.

 case 100:

 g_tracker.executeCommand(

 CvtCommand::CHANGE_TRACKING_RECTANGLE_SIZE, 8, 0);

 break;

 // A - Decrease tracking rectangle width.

 case 97:

 g_tracker.executeCommand(

 CvtCommand::CHANGE_TRACKING_RECTANGLE_SIZE, -8, 0);

 break;

 // T - Move strobe UP (change position in TRACKING mode).

 case 116:

 g_tracker.executeCommand(

 CvtCommand::MOVE_TRACKING_RECTANGLE, 0, 4);

 break;

 // G - Move strobe DOWN (change position in TRACKING mode).

 case 103:

 g_tracker.executeCommand(

 CvtCommand::MOVE_TRACKING_RECTANGLE, 0, -4);

 break;

 // H - Move strobe RIGHT (change position in TRACKING mode).

 case 104:

 g_tracker.executeCommand(

 CvtCommand::MOVE_TRACKING_RECTANGLE, -4, 0);

 break;

 // F - Move strobe LEFT (change position in TRACKING mode).

 case 102:

 g_tracker.executeCommand(

 CvtCommand::MOVE_TRACKING_RECTANGLE, 4, 0);

 break;

 }

 }

}

// Mouse callback function.

void MouseCallBackFunc(int event, int x, int y, int flags, void* userdata)

{

 // Set mouse position in any case.

 g_tracker.executeCommand(CvtCommand::SET_TRACKING_RECTANGLE_POSITION, x, y);

 switch (event)

www.constantrobotics.com 26 / 36

 {

 /// Capture object.

 case cv::EVENT_LBUTTONDOWN:

 g_tracker.executeCommand(CvtCommand::CAPTURE, x, y);

 break;

 /// Reset tracker.

 case cv::EVENT_RBUTTONDOWN:

 g_tracker.executeCommand(CvtCommand::RESET);

 break;

 case cv::EVENT_MBUTTONDOWN:

 break;

 case cv::EVENT_MOUSEMOVE:

 break;

 }

}

EXPLANATION OF SIMPLE DEMO APPLICATION

The demo application opens a video file, captures video frames and passes them to the tracking

library for processing. The application only requires the OpenCV library header files and the tracking
library to be connected:

#include <opencv2/opencv.hpp>

#include "Cvt.h"

// Link namespaces.

using namespace cv;

using namespace std;

using namespace cr::vtracker;

After the header files are included, the following global variables are declared: mouse pointer

coordinates to control tracking capture and reset and instance of the Cvt class:

// Global variables.

Cvt g_tracker;

int g_frameWidth = 0;

int g_frameHeight = 0;

The prototype mouse event processing function is then declared:

// Prototype of mouse callback function.

void MouseCallBackFunc(int event, int x, int y, int flags, void* userdata);

In the main function the user must set name of video source. It can be video file or camera num.

After the video source name is set the application opens video source.

// Dialog to enter video source init string.

string initString = "0";

cout << "Enter video source init string "

www.constantrobotics.com 27 / 36

<< "(camera num, rtsp string, video file): ";

cin >> initString;

cout << initString << endl;

// Open video source.

VideoCapture videoSource;

bool result = false;

if (initString.size() < 5)

 result = videoSource.open(stoi(initString));

else

 result = videoSource.open(initString);

if (result == false)

{

 cout << "ERROR: Video source not open" << endl;

 return -1;

}

Variables for video frames are declared after opening a video file:

// Init variables.

Mat frame;

Mat yuvFrame;

CvtResults trackerData;

After that, the initial size of the tracking rectangle is set (default dimensions are 128x128 pixels)

through a call to the setParam(...) method, as well the YUV input pixel form and 3 color channels for
processing (see “Library parameters”):

// Set tracker parameters.

g_tracker.setParam(CvtParam::TRACKING_RECTANGLE_WIDTH, 72);

g_tracker.setParam(CvtParam::TRACKING_RECTANGLE_HEIGHT, 72);

g_tracker.setParam(CvtParam::LOST_MODE_OPTION, 0);

// Set YUV input data format.

g_tracker.setParam(CvtParam::INPUT_FORMAT, 4);

// Set 3 channels (Y, U and V).

g_tracker.setParam(CvtParam::NUM_CHANNELS, 3);

Next, the video output windows are declared, and the mouse event handler is registered:

// Init OpenCV window.

namedWindow("Simple demo application", WINDOW_AUTOSIZE);

// Set mouse callback.

setMouseCallback("Simple demo application", MouseCallBackFunc, nullptr);

Next is an endless loop of video frame capture, processing, and display. In the loop, the next

video frame is captured first. When the end of the video file is reached, playback starts again.

// Capture next video frame.

videoSource >> frame;

if (frame.empty())

www.constantrobotics.com 28 / 36

{

 // If we have video file we can set initial position to replay.

 videoSource.set(CAP_PROP_POS_FRAMES, 0);

 continue;

}

Captured video frame with OpenCV library is in BGR 24 bits format. To be processed by the

library, it must be converted to YUV format:

// Convert to YUV format.

cvtColor(frame, yuvFrame, COLOR_BGR2YUV);

The resulting video frame in YUV format is sent to the library for processing. After processing

we get the results of work (tracking data).

// Process video frame.

g_tracker.processFrame(

yuvFrame.data, yuvFrame.size().width, yuvFrame.size().height);

// Get current tracker data.

trackerData = g_tracker.getResults();

Next, draw the position of the tracking rectangle on the original video. In FREE mode, draw a

white capture rectangle with the center coinciding with the position of the mouse pointer:

// Choose tracking rectangle color according to tracker mode.

Scalar rectColor;

switch (trackerData.mode) {

case CVT_FREE_MODE_INDEX: rectColor = Scalar(255, 255, 255); break;

case CVT_TRACKING_MODE_INDEX: rectColor = Scalar(0, 0, 255); break;

case CVT_LOST_MODE_INDEX: rectColor = Scalar(255, 0, 0); break;

default: rectColor = Scalar(255, 255, 255); break; }

// Draw tracking rectangle.

Rect rect(trackerData.trackingRectangleCenterX -

 trackerData.trackingRectangleWidth / 2,

 trackerData.trackingRectangleCenterY -

 trackerData.trackingRectangleHeight / 2,

 trackerData.trackingRectangleWidth,

 trackerData.trackingRectangleHeight);

rectangle(frame, rect, rectColor, 2);

Next, display the video and handle keyboard events (exit the application by pressing ESC).

// Show video with tracker result information.

imshow("Simple demo application", frame);

// Wait keyboard events.

switch (waitKey(25))

{

www.constantrobotics.com 29 / 36

// ESC - Exit.

case 27:

 destroyAllWindows();

 return 1;

// W - Increase tracking rectangle height.

case 119:

 g_tracker.executeCommand(

 CvtCommand::CHANGE_TRACKING_RECTANGLE_SIZE, 0, 8);

 break;

// S - Decrease tracking rectangle height.

case 115:

 g_tracker.executeCommand(

 CvtCommand::CHANGE_TRACKING_RECTANGLE_SIZE, 0, -8);

 break;

// D - Increase tracking rectangle width.

case 100:

 g_tracker.executeCommand(

 CvtCommand::CHANGE_TRACKING_RECTANGLE_SIZE, 8, 0);

 break;

// A - Decrease tracking rectangle width.

case 97:

 g_tracker.executeCommand(

 CvtCommand::CHANGE_TRACKING_RECTANGLE_SIZE, -8, 0);

 break;

// T - Move strobe UP (change position in TRACKING mode).

case 116:

 g_tracker.executeCommand(

 CvtCommand::MOVE_TRACKING_RECTANGLE, 0, 4);

 break;

// G - Move strobe DOWN (change position in TRACKING mode).

case 103:

 g_tracker.executeCommand(

 CvtCommand::MOVE_TRACKING_RECTANGLE, 0, -4);

 break;

// H - Move strobe RIGHT (change position in TRACKING mode).

case 104:

 g_tracker.executeCommand(

 CvtCommand::MOVE_TRACKING_RECTANGLE, -4, 0);

 break;

// F - Move strobe LEFT (change position in TRACKING mode).

case 102:

 g_tracker.executeCommand(

 CvtCommand::MOVE_TRACKING_RECTANGLE, 4, 0);

 break;

}

In the mouse event processing function, objects are captured and reset using the

executeCommand(...) method. Pressing the left mouse button performs a tracking capture if the
algorithm is in FREE mode or a tracking reset in other cases.

void MouseCallBackFunc(int event, int x, int y, int flags, void* userdata)

www.constantrobotics.com 30 / 36

{

 // Set mouse position in any case.

 g_tracker.executeCommand(CvtCommand::SET_TRACKING_RECTANGLE_POSITION, x, y);

 switch (event)

 {

 /// Capture object.

 case cv::EVENT_LBUTTONDOWN:

 g_tracker.executeCommand(CvtCommand::CAPTURE, x, y);

 break;

 /// Reset tracker.

 case cv::EVENT_RBUTTONDOWN:

 g_tracker.executeCommand(CvtCommand::RESET);

 break;

 case cv::EVENT_MBUTTONDOWN:

 break;

 case cv::EVENT_MOUSEMOVE:

 break;

 }

}

PROTOCOL PARSER LIBRARY

DESCRIPTION

In many applications there we need remote control of the tracking algorithm. For example, when

designing an automatic tracking device, the designer needs to be able to control the device through
communication channels. To do so, it needs to define a control protocol and implement message
encoding and decoding functions. The message parser software library for the CvTracker Parser library
is designed to facilitate this task. The library is delivered as source code files including: CvtParser.h,
CvtParser.cpp, CvtDataStructures.h (from the tracking library) and CvtParserVersion.h. The
CvtParser.h file contains the declaration of the CvtParser C++ class, which implements the message
encoding and decoding functions. To use the library, the developer needs to include source code files
in C++ project.

MESSAGE FORMATS

Message types

The protocol parser library defines three types of messages:
1. SET_PARAM – command to set parameter (see “Library parameters”).
2. COMMAND – command to the tracking library (see “Library control commands”).
3. DATA – results data (see “Results structure”).

www.constantrobotics.com 31 / 36

SET_PARAM message format

byte: 0 1 2 3 4 5 6 7 8 9 10

hex: 0x01 0x08 0x00 Int32_t id float value

Message size 11 bytes.

Message fields:

int32_t id Parameter identifier (see “Library parameters”). The value is in little endian format.

float value Parameter value.

COMMAND message format

byte: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

hex: 0x02 0x08 0x00 int32_t id int32_t arg1 int32_t arg2

byte: 15 16 17 18

hex: int32_t arg3

Message size 19 bytes.

Message fields:

int32_t id Command ID (see “Library control commands”).

int32_t arg1 The value of the first argument of the command (see “executeCommand(...)
method”). The value is in little endian format.

int32_t arg2 The value of the second argument of the command (see “executeCommand(...)
method”). The value is in little endian format.

int32_t arg3 The value of the third argument of the command (see “executeCommand(...)
method”). The value is in little endian format.

DATA message format

The DATA message includes values of fields of CvtResults structure declared in

CvtDataStructures.h file. Number of fields from CvtResults structure included in message can vary.
Below is an example of data packet with all fields included.

byte: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

hex: 0x00 0x80 0x00 fields mask = 0xFFFFFFFF trackingRectangleCenterX trackingRectangleCenterY

byte: 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

hex: trackingRectangleWidth trackingRectangleHeight objectCenterX objectCenterY

byte: 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

hex: objectWidth objectHeight frameCounterInLostMode frameCounter

byte: 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

hex: frameWidth frameHeight searchWindowWidth searchWindowHeight

byte: 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

hex: searchWindowCenterX searchWindowCenterY lostModeOption frameBufferSize

byte: 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

hex: maximumNumberOfFramesInLostMode trackerFrameID bufferFrameID horizontalObjectVelocity

byte: 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

hex: verticalObjectVelocity objectDetectionProbability mode A* B*

A* = useTrackingRectangleAutoSize (0 == false, 1 == true).
B* = useTrackingRectangleAutoPosition (0 == false, 1 == true).

www.constantrobotics.com 32 / 36

Message fields:

field mask Bitmask of the CvtResults structure fields included in the message. The bit mask is
formed as follows: a single value of each bit starting from the left bit of byte #3
indicates the inclusion of the corresponding field of the CvtResults structure in the
packet in order of declaration. The last four bits of the byte 5 group are not used and
can have any value. In the above example, all bits of the mask are single, indicating
that all fields of the CvtResults structure are included in the packet. When decoding
a DATA message, the receiver reads the bitmask and decodes the message
accordingly.

data fields CvtResults structure data fields according to declaration.

Assuming, that we want to encode only trackingRectangleCenterX and

trackingRectangleCenterY fields, then to do this we need to form an appropriate bitmask and include
only the specified fields of the CvtResults structure in the message. To form the bitmask, we must define
the sequence number of the declaration of the corresponding field of the CvtResults structure. The
trackingRectangleCenterX field is declared first and corresponds to the leftmost bit of the bitmask. The
trackingRectangleCenterY field corresponds to the second bit. So, the bitmask looks as follow:

byte: 3 4 5 6

bit: 1 1 0

So, the message will be 15 bytes long, as shown below:

byte: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

hex: 0x00 0x08 0x01 0xC0 0x00 0x00 0x00 trackingRectangleCenterX trackingRectangleCenterY

PROTOCOL PARSER CLASS DESCRIPTION

CvtParser class

The CvtParser C++ class is declared in the CvtParser.h file and contains methods of encoding

and decoding messages for the tracker library. The class declaration is given below.

namespace cr

{

namespace vtracker

{

class CvtParser

{

public:

 CvtParser();

 ~CvtParser();

 void encodeParam(uint8_t* data, int& size, CvtParam id, float value);

 void encodeCommand(uint8_t* data, int& size, CvtCommand id,

 int arg1 = -1, int arg2 = -1, int arg3 = -1);

www.constantrobotics.com 33 / 36

 void encodeResults(uint8_t* data, int& size, CvtResults& results,

 CvtResultsMask* mask = nullptr);

 int decodePacket(uint8_t* data, int size);

 CvtResults getResults();

 void getParam(CvtParam& id, float& value);

 void getCommand(CvtCommand& id, int& arg1, int& arg2, int& arg3);

 static std::string getVersion();

};

}

}

Table 14 – Methods of CvtParser class.

Method Description

encodeParam(…) SET_PARAM command encoding method.

encodeCommand(…) COMMAND encoding method.

encodeResults(…) DATA encoding method.

decodePacket(…) Method for decoding input messages.

getResults() Method for retrieving the results structure after decoding using
decodePacket(...) method.

getParam(…) Method for retrieving the decoded library parameter after decoding using
decodePacket(...) method.

getCommand(…) Method to retrieve decoded command for library after decoding by
decodePacket(...) method.

getVersion() Static method to retrieve the string of the current library version.

encodeParam(…) method

The encodeParam(...) method is intended to encode SET_PARAM command. The declaration

of the method:

void encodeParam(uint8_t* data, int& size, CvtParam id, float value);

Parameters:

data Pointer to buffer to be filled with message data. Size of data buffer must be >= 11

size Message buffer size. Must be at least 15 bytes.

id Parameter ID to be included in the message (see “Library parameters”).

value Parameter value to be included in the message.

encodeCommand(…) method

The encodeCommand(...) method is used to encode COMMAND messages. The declaration of

the method:

void encodeCommand(uint8_t* data, int& size, CvtCommand id,

www.constantrobotics.com 34 / 36

 int arg1 = -1, int arg2 = -1, int arg3 = -1);

Parameters:

data Pointer to message buffer. Size of data buffer must be >= 19.

size Size of the generated message. 19 bytes.

id Command ID to be included in the message.

arg1 The first argument of the command (see “executeCommand(...) method”).

arg2 The second argument of the command (see “executeCommand(...) method”).

arg3 The third argument of the command (see “executeCommand(...) method”).

encodeResults(…) method

The encodeResults(...) method is used to encode DATA messages. The declaration of the

method:

void encodeResults(uint8_t* data, int& size, CvtResults& results,

 CvtResultsMask* mask = nullptr);

Parameters:

data Pointer to message buffer. Data buffer size must be >= 109.

size The size of the result message.

results Results structure (see “Results structure”).

mask Pointer to the CvtResultsMask structure. This structure is declared in the
CvtDataStructures.h file and contains fields with names similar to those of the
CvtResults structure, but of a logical type. The declaration of the structure is
given below.

typedef struct

{

 bool mode;

 bool trackingRectangleCenterX;

 bool trackingRectangleCenterY;

 bool trackingRectangleWidth;

 bool trackingRectangleHeight;

 bool objectCenterX;

 bool objectCenterY;

 bool objectWidth;

 bool objectHeight;

 bool frameCounterInLostMode;

 bool frameCounter;

 bool frameWidth;

 bool frameHeight;

 bool searchWindowWidth;

 bool searchWindowHeight;

 bool searchWindowCenterX;

 bool searchWindowCenterY;

 bool lostModeOption;

 bool frameBufferSize;

 bool maximumNumberOfFramesInLostMode;

 bool trackerFrameID;

www.constantrobotics.com 35 / 36

 bool bufferFrameID;

 bool horizontalObjectVelocity;

 bool verticalObjectVelocity;

 bool objectDetectionProbability;

 bool useTrackingRectangleAutoSize;

 bool useTrackingRectangleAutoPosition;

} CvtResultsMask;

By default all fields of CvtResults structure are included into DATA message, but
when the user uses the field mask, only those fields of CvtResults structure
which are marked as TRUE in corresponding fields of CvtResultsMask structure
will be included into message (see “DATA message format”).

decodePacket(…) method

The decodePacket(...) method is designed to decode input messages. The declaration of the

method:

int decodePacket(uint8_t* data, int size);

Parameters:

data Pointer to the packet data.

size The size of the packet data.

Return value:
The method returns 0 if the DATA message is successfully decoded, 1 if the SET_PARAM message is
successfully decoded, 2 if the COMMAND message is successfully decoded and -1 if there are any
errors in the message. The value of decoded data can be retrieved using getResults(), getParam(...)
and getCommand(...) methods.

getResults() method

The getResults() method is designed to get the decoded results structure (after decoding the

message by decodePacket(...) method). The declaration of the method:

CvtResults getResults();

Return value:
The method returns the results structure (see “Results structure”) according to the decoded message
using the decodePacket(...) method.

getParam(…) method

The getParam(...) method is designed to get the decoded parameter from the SET_PARAM

message. The declaration of the method:

void getParam(CvtParam& id, float& value);

www.constantrobotics.com 36 / 36

Parameters:

id Parameter ID (see “Library parameters”).

value Parameter value.

getCommand(…) method

The getCommand(...) method is designed to get the decoded COMMAND message data. The

declaration of the method:

void getCommand(CvtCommand& id, int& arg1, int& arg2, int& arg3);

Parameters:

id Command ID (see “Library control commands”).

arg1 First command argument (see “executeCommand(...) method”).

arg2 Second command argument (see “executeCommand(...) method”).

arg3 Third command argument (see “executeCommand(...) method”).

getVersion() method

The static getVersion() method is designed to get the string of the current software library

version. The declaration of the method is given below.

static std::string getVersion();

Return value:
The method returns a string of the current software library version in the format “8.0.0”.

The method can be called without creating an object of the CvtParser class, as shown below.

cout << "CvtParser lib v" << CvtParser::getVersion() << endl;

