

Network Transport Protocol v5.0
specification

www.constantrobotics.com

CONTENTS

DOCUMENT VERSIONS .. 3

PROTOCOL VERSIONS ... 3

DESCRIPTION .. 3

PROTOCOL PARAMETERS ... 3

DATA EXCHANGE PRINCIPLE .. 3

DATA PACKET FORMAT ... 7

MARKER PACKET FORMAT .. 8

LOST_DATA_REQUEST PACKET FORMAT ... 8

CONFIRM PACKET FORMAT .. 9

www.constantrobotics.com 3 / 9 (En)

DOCUMENT VERSIONS

Table 1 – Document versions.

Version Release date What has changed

5.0 12.12.2022 Specification of Network Transport Protocol version 5.0.

PROTOCOL VERSIONS

Table 2 – Protocol versions.

Version Release date What's new

5.0 12.12.2022 1. A confirmation mechanism for accepted data has been added.
2. New types of information messages have been added.
The previous versions are test versions.

DESCRIPTION

The Network Transport Protocol version 5.0 (hereafter referred to as the protocol) is designed

for the transmission of any data over a network via UDP packets. According to the OSI classification,
the protocol belongs to the session or application layer. The protocol is a layer over the UDP protocol
and provides reliable data delivery of up to 4 169 727 bytes. The protocol is designed for reliable data
transmission over radio links and provides data exchange in the presence of UDP packet loss. The
protocol allows up to 16 virtual data channels per UDP port and includes an acknowledgement
mechanism for received data. The protocol has a minimum number of service bytes (6 bytes for data
packets) added to the data being transmitted.

PROTOCOL PARAMETERS

Table 3 – Protocol parameters.

Parameter Value

OSI layer The protocol is a layer over the UDP protocol. The OSI layer is the
session or application layer.

Packet loss processing The sender divides the volume of data to be transmitted into
individual packets (sections) and sends them sequentially. When
the receiver detects a lost packet (when a missing packet is
detected), it sends a request to the sender to resend the lost data.
The sender, having received the request to resend the lost data,
sends it (lost data) firstly.

Confirmation of received data When the receiver receives all packets relating to the same
logically linked data, it sends an acknowledgement packet of the
received data to the sender.

Maximum data packet size 1024 bytes of which 1018 bytes of data and 6 service bytes.

Maximum size of data to be
transmitted

4 169 727 bytes (e.g. video frame data size).

Adapting to channel capacity Packets should be sent at intervals appropriate to the
communication channel bandwidth.

DATA EXCHANGE PRINCIPLE

The protocol defines four types of data packets: DATA – packets with data to be transmitted

(with or without acknowledgement sign), MARKER – packets completing the transmission of logically
related data, LOST_DATA_REQUEST – request to resend lost data and CONFIRM –

www.constantrobotics.com 4 / 9 (En)

acknowledgement packet of received data. The principle of data exchange using the protocol is as
follows: the sender divides the transmitted data into sections of a fixed size of 1018 bytes, except for
the last section, which may be smaller than 1018 bytes (unless the volume of data to be transmitted is
divided by exactly 1018 bytes). Logically linked data (e.g. one video frame data) is assigned a unique
identifier that allows the receiver to determine when new data has been received. A Data ID is included
in the each DATA packet being transmitted. Each data section (with a maximum size of 1018 bytes) is
packed into a DATA packet – a packet header of 6 bytes is added to the data being transmitted.
Generated packets with a maximum size of 1024 bytes are subsequently sent by the sender to the
specified IP address via the specified UDP port. After all data packets have been sent, the sender sends
two MARKER packets (1 byte size each), signaling to the receiver that it has finished sending data.
The receiver receives DATA packets, extracts a useful amount of data from them (maximum 1018
bytes) and copy them in the input data buffer. When a missing packet is detected (each packet has a
sequential number), the receiver generates a LOST_DATA_REQUEST to resend the lost data and
sends it to the sender. Lost packets are detected based on their sequence number (packet ID) – if there
is a gap in the sequence of received packet numbers, this indicates that there are lost packets (one or
more). The receiver also checks for lost DATA packets when processing MARKER packets – there are
lost packets if the number of packets received (packets with the same data ID) is less than the total
number of packets that should have been transmitted. The sender when receiving a
LOST_DATA_REQUEST will resend the lost packets firstly. The protocol allows the transmitted data
to be divided into individual virtual channels (up to 16 channels – logical ports) for sending several
different data types over a single UDP port with separation in receiver’s side. If data was transmitted
with DATA packets with acknowledgement sign, the receiver sends CONFIRM packet –
acknowledgement packet of received data for sender after receiving logically connected data (after
receiving all DATA packets belonging to the same data ID, e.g. one video frame).

Figure 1 shows the data being transferred (pink and purple). Each of logically related data is
assigned a different identifier (data_ID == 0 and data_ID == 1 in figure 1). The Data ID are assigned
sequentially starting with 0, with the next data to be transmitted being assigned the identifier 0 again
once the maximum value of 15 is reached (0, 1, 2, …, 15, 0, 1 …). To avoid confusion with the same
Data ID, there are additional unique identifiers for each data_ID value as part of the DATA packets
(part_ID). The protocol requires the sender to have two buffers: a packets buffer and a send data buffer.
The send data buffer contains the packets that the sending stream sends to the receiver. If lost data
needs to be resent, the sender copies the relevant packets from the packets buffer to the send data
buffer.

Figure 1 – Principle of filling the packets buffer and the send data buffer.

When the data is sent, it is divided into consecutive sections of 1018 bytes except for the last

section which may be smaller (as shown in Figure 1). For each piece of data, a DATA packet is
generated and placed in the packets buffer. The packet buffer is an array of 4096 cells (the maximum
number of packets for a single logical data transfer) with a size of 1024 bytes (the maximum size of a
transmitted packet) for each of the possible packet ID (16 buffers of 4096 packets in total). In Figure 1,
for ease of explanation of protocol operation, the maximum number of DATA packets for data
transmitted is 4 and the maximum number of data ID variants is also 4 (Figure 1 shows 4 buffers of 4

www.constantrobotics.com 5 / 9 (En)

data packets each). The packets generated from the transmitted data are placed in the corresponding
cells of the packet buffer (according to the data_ID and packet number, starting from 0). Figure 1 shows
the adding of two amounts of data with data_ID == 0 and data_ID == 1 to the packets buffer. The first
data is assigned data_ID == 0. This data is divided into 3 DATA packets and placed in the packet buffer.
The following data is assigned data_ID == 1 and is divided into 4 DATA packets. When data is added
to the packets buffer, the generated packets are added to the send data buffer. Once all required DATA
packets have been added, two MARKER packets (1 byte size each) are added to the send data buffer
to signal the receiver that the sender has completed sending the data. The send data buffer is required
by the sending stream, which sequentially reads DATA packets from it and sends them to the receiver.
When a request is received to resend lost data, the relevant packets (specified in the
LOST_DATA_REQUEST) will be re-posted to the send data buffer from the packets buffer. The
packets buffer can store up to 15 previous amounts of data to provide operation in case of high link
time delays.

Figure 2 – The principle of information exchange.

Figure 2 shows the principle of information exchange and illustrates the principle of reading

DATA packets from the data sending buffer and sending them. The principle of data exchange with
DATA packets with acknowledgement sign is similar, except that the receiver sends a CONFIRM
packet on receipt of all DATA packets relating to the same logically related data. Figure 2 shows the
state of the send data buffer when sending DATA packets. The data send buffer size is 65536 packets.
A large outgoing packet buffer size is required to provide stable data transmission in an unstable
transmission environment. In Figure 2, for ease of explanation, the size of the send data buffer is equal
to 12 DATA packets. The red dot at the bottom of the corresponding buffer cells indicates the current

www.constantrobotics.com 6 / 9 (En)

position for reading the packet to be sent. After sending the next packet, the sending thread increases
the index by one (goes to the next packet). If the send thread sees a cell with no data to send, it expects
new data to be added to the buffer. Consider the example shown in Figure 2.

At time T1, the send thread reads a DATA packet with index 0 from the send data buffer and
sends it out. The packet takes some time to transmit and at time T2 the sent packet with index 0 is
received by the receiver. The receiver processes the received packet and places the data transmitted
in it into the input data buffer starting at the appropriate position. The address of the first byte to copy
the packet data to the input buffer is calculated as follows:

𝑑𝑎𝑡𝑎_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 1018 ∗ 𝑝𝑎𝑐𝑘𝑒𝑡_𝐼𝐷 (1)

where: 𝑝𝑎𝑐𝑘𝑒𝑡_𝐼𝐷 – a packet index between 0 and 4095 (the maximum packet index value for the data

to be transmitted is calculated as 𝑑𝑎𝑡𝑎_𝑠𝑖𝑧𝑒/1018).
After sending a packet with index 0, the sender jumps to the next cell of the send buffer and

clears the cell with the already sent packet. After a certain time interval (at time point T3) the sender
sends the next DATA packet – packet with index 1. It then moves on to the next packet in the send
data buffer. The time interval in microseconds between packets (between the start of sending the
previous packet and the current packet) depends on the size of the previous packet transmitted and is
calculated as follows:

 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑚𝑘𝑠 =
𝑝𝑎𝑐𝑘𝑒𝑡_𝑠𝑖𝑧𝑒 ∗ 8

𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ_𝑀𝑏𝑝𝑠
 (2)

where: 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑚𝑘𝑠 – time interval between sending packets in microseconds; 𝑝𝑎𝑐𝑘𝑒𝑡_𝑠𝑖𝑧𝑒 – the size
of the previous packet transmitted (1024 bytes or less); 𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ_𝑀𝑏𝑝𝑠 – channel bandwidth
in megabits per second (determined by the sender).

Assume that the package with index 1 has been lost. At time T4, sender sends packet with index
2 (last DATA packet for data with index data_ID == 0). At time T5 a DATA packet with index 2 is
received by the receiver. The receiver processes the incoming packet and copies the data it contains
into the appropriate area of the input buffer. As you can see from the example, the lost package is index
1. The receiver determines that a packet has been lost on the basis that there is a gap in the IDs of
successive received packets. At this time, the sender at time moments T6 and T7 has sent two final
MARKER packets of 1 byte in size with a minimum time interval between them. Immediately after
packet loss is detected, the receiver at time T8 generates a lost data request LOST_DATA_REQUEST,
which includes the index of the lost packets (index 1) and the ID of the data to which they relate (index
0). A lost data request is sent to the receiver. While the LOST_DATA_REQUEST sends in the example
in figure 2 the data_ID == 1 is added to the send data buffer and the sender sends a DATA packet with
data_ID == 1 at time T11. By this time the receiver has already received two MARKER packets. When
receiving MARKER packets, the receiver has detected that there are lost packets. The presence of lost
packets in this case is indicated by the fact that the total number of received packets is less than or
equal to the maximum packet index for the data_ID == 0 (in this example it is index 2, transmitted in
the DATA packet). The receiver generates a LOST_DATA_REQUEST and sends it at time T12. At
time T13 the sender receives a LOST_DATA_REQUEST containing a lost packet index 1 (only one in
this example). Data_ID == 0 is included in LOST_DATA_REQUEST. The sender copies the relevant
packet from the packet buffer to the send buffer. Copying is performed so that the packets requested
for retransmission are first in the sending queue for the sending stream. To do this, the receiver sets
the position for sending back the required number of packets (after time moment T11 the sender has
moved to the next packet data_ID == 1 and packet_ID == 1) and copies the packet data for sending.
At time T14, the receiver receives a packet with index 0 data_ID == 1 and stacks it in the receive buffer
corresponding to data index 1, while the buffer for data index 0 remains empty. At time T15 the sender
re-sends the lost packet with index 1 for data_ID == 0. At time T16, the sender receives a second
LOST_DATA_REQUEST generated by the receiver after processing the MARKER packets.
LOST_DATA_REQUEST packets are generated each time a MARKER packet is processed in case of
lost data. In this example, for simplicity, only one LOST_DATA_REQUEST packet is generated after
processing two MARKER packets. The sender, as in the previous case, adds the corresponding packet
with index 1 to the send buffer. At time T17 the receiver receives the missing data packet data_ID ==
0 and copies the data contained in the DATA packet into the receive buffer. The data_ID == 0 is then
fully collected and the receiver outputs the data ready signal. The sender sends the missing packet

www.constantrobotics.com 7 / 9 (En)

(DATA packet with index 1) again at time T18, but it will be discarded by the receiver. The sender will
then revert back to sending data_ID == 1 data packets. In this way, the protocol performs monitoring
and retransmission of lost packets to provide reliable data transmission. If DATA packets contain an
indication of the need for reception acknowledgement, the receiver sends a CONFIRM packet to the
sender after the relevant data has been collected on the receiving side.

In addition to the principle described above, the protocol has the ability to work in one-way
communication channels. In order to ensure reliable data transmission under conditions of packet loss
on one-way links (with data transmission only to one side), the protocol has the ability to add packets
with the same data ID to the send data buffer several times (the number of repetitions is determined by
the user).

DATA PACKET FORMAT

DATA packets are required for data transmission. DATA packets have a maximum size of 1024

bytes of which 6 header bytes and 1018 data bytes. The minimum size of a DATA packet is 7 bytes (1
byte of data). DATA packets have the following format:

bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

field 0 0 or 1 0 1 logic_port data_ID part_ID

bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

field 0 0 0 0 packet_ID

bit 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

field 0 0 0 0 max_packet_ID

bit 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

field data[0] data[1]

bit
…

8184 8185 8186 8187 8188 8189 8190 8191

field data[1017]

Table 4 – DATA packet fields.

Field Value Description

Header 0x1
or

0x5

The packet header occupies the first 4 bits of the first byte of the
packet. It is fixed at 0x1 for DATA packets without
acknowledgement sigh or 0x5 with acknowledgement sign.

logic_port from 0 (0x0)
to

15 (0xF)

The logical port number is the last 4 bits of the first byte of the
packet. The data being transmitted can be divided into 16 virtual
ports (streams). For example, data can be split by destination
for transmission over a single UDP port.

data_ID from 0 (0x0)
to

15 (0xF)

The identifier of the data being transmitted. When data (e.g.
video frame data) is transmitted, the sender sequentially assigns
a new identifier to the data. When the value 15 is reached, the
next ID will be 0 (0, 1, … 15, 0, 1, …).

part_ID from 0 (0x0)
to

15 (0xF)

Incremental counter for data_ID. The counter value is formed as
follows: for each data_ID value each time the part_ID counter
value is incremented by 1. If the counter value is 15 then the
next value will be 0 (0, 1, … 15, 0, 1, …). For example, data has
been assigned index 0 (data_ID == 0). The part_ID value for
them will be 0 after time the next data will also have ID 0, but
the counter value of part_ID must be 1. The counter is necessary
for the receiver to decide that new data has arrived and the
corresponding input buffer must be reset (according to the
data_ID) before copying the new data.

packet_ID
(big endian)

from 0 (0x000)
to

4095 (0xFFF)

Packet ID (12 bits). The data to be sent is divided into packets
and each packet is sequentially assigned an identifier from 0
(0x000) to 4095 (0xFFF). The identifier value is sent in big
endian format.

max_packet_ID
(big endian)

from 0 (0x000)
to

4095 (0xFFF)

Maximum packet identifier for data to be sent (last packet
identifier). If size of data to be sent is less than 1018 bytes then
all data will be sent in one packet. Hence, packet_ID and

www.constantrobotics.com 8 / 9 (En)

max_packet_ID fields will be the same and equal to 0 (0x000).
The identifier value is sent in big endian format.

data[n] any Data to be transmitted. The maximum size of data included in a
DATA packet is 1018 bytes.

MARKER PACKET FORMAT

MARKER packets are required to signal to the receiver that the data transmission, with the

corresponding identifier (data_ID) is complete. When a MARKER packet is received, the receiver is
able to check if all packets have been received and, if a packet loss is detected, generates a
LOST_DATA_REQUEST request to retransmit the data. After transmitting all DATA packets
corresponding to a specific data ID (data_ID), the sender sends two MARKER packets in sequence
with the shortest possible interval between them. The MARKER packets are 1 byte long in the following
format:

bit 0 1 2 3 4 5 6 7

field 0 0 1 0 data_ID

Table 5 – MARKER packet fields.

Field Value Description

Header 0x2 The packet header occupies the first 4 bits of the first byte of the
packet. It has a fixed value.

data_ID from 0 (0x0)
to 15 (0xF)

The ID of the data to which the MARKER packets relate.

LOST_DATA_REQUEST PACKET FORMAT

LOST_DATA_REQUEST packets are intended to request retransmission of lost DATA packets.

The LOST_DATA_REQUEST packet has a minimum size of 4 bytes and a maximum size of 1024
bytes. The packet includes the lost packet IDs that the receiver has identified. In total
LOST_DATA_REQUEST packet can include up to 511 DATA packet IDs for retransmission by the
sender. LOST_DATA_REQUEST packets have the following format:

bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

field 0 0 1 1 0 0 0 0 data_ID part_ID

bit 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

field 0 0 0 0 lost_packet_ID #1

bit 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

field 0 0 0 0 lost_packet_ID #2

bit … up to 1024 bytes

field … up to 1024 bytes

Table 6 – LOST_DATA_REQUEST packet fields.

Field Value Description

Header 0x30 The packet header occupies the first byte of the packet. It has a
fixed value.

data_ID from 0 (0x0)
to 15 (0xF)

Data identifier to which the packets requested for retransmission
correspond.

part_ID from 0 (0x0)
to 15 (0xF)

Incremental counter for data_ID, transmitted with DATA
packets.

lost_packet_ID
(big endian)

from
0 (0x000) to

4095 (0xFFF)

Identifier of a lost packet for retransmission (12 bits). The
identifier value is sent in big endian format.

www.constantrobotics.com 9 / 9 (En)

CONFIRM PACKET FORMAT

CONFIRM packets are required to acknowledge receipt of data. After receiving all DATA

packets belonging to the same logically linked data (data united by one data_ID), the receiver sends a
CONFIRM packet to the sender. CONFIRM packets are only sent if the DATA packets contain an
acknowledgement to receive (DATA packet header is 0x5). CONFIRM packets are 1 byte in the
following format:

bit 0 1 2 3 4 5 6 7

field 0 1 0 0 data_ID

Table 7 – CONFIRM packet format.

Field Value Description

Header 0x4 The packet header occupies the first 4 bits of the first byte of the
packet. It has a fixed value.

data_ID from 0 (0x0)
to 15 (0xF)

The identifier of the data whose reception is confirmed.

